Chapter 3

Selective execution

Example: How to use a program to solve quadratic equations

Az> + Bx+C =0

Formula of real roots:

—BEVEAAC if B2 4AC >0

No real roots otherwise

Logical constants: .TRUE. and .FALSE.

Relational-operator:

Simple logical expressions: logical constants, logical variables or
relational expressions

Relational expressions:

expression relational-operator expression

Examples:

X < 5.2

Number == -99

B xx 2 >= 4.0 x A x C
1.0 >= 24.0

"cat" < "dog"

"cat" < "cattle"

The value of relational expressions is either .true. or .false.

The character strings are compared according to their coding (most

common standard coding schemes is ASCII).
See http://www.ascii-code.com/ for ASCII codes.
Comparison is from left to right.

Shorter strings are appended blanks.

Logical operations:
.NOT.

.AND.

.OR.

.EQV.

.NEQV.

The logical operations are defined at tables in pp.46.

If a logical expression contains arithmetic operations, relational

operations, and logical operations, the operations are performed in
the following order:

1. Arithmetic operations and functions
2. Relational operations

3. Logical operations in the order .NOT., .AND., OR.,
(or .NEQV.)

Examples:

+ 1 > 10 .AND. .NOT. N < 3
3 .0R. N ==
. M>N .AND. X < Z .EQV. M <= N .AND. X >= Z

Wrong examples:

N == 3 .0R. SIN(X)
N >2 .AND. N < 1
X .NOT. Y + 3

X .NEQV. Y *x 2

Simple IF construct:

IF (logical-expression) THEN
statement-sequence
END IF

If the value of logical-expression is true, then the

statement-sequence will be executed.

If the value of logical-expression is false, then the

statement-sequence will be ignored.

IF (B*B - 4.0%AxC >= 0) THEN
PRINT *, "This quadratic equation has real solutions!"
END IF

In this example, if B> — 4AB > 0, then the value B¥xB - 4.0%A*C

will be true and the computer will print out This quadratic

equation has real solutions!

Otherwise, the computer will not print it.

The Fortran has a simpler if statement called logical IF statement.

IF (logical-expression) statement
Example
IF (1.5 <= X .AND. 2.5 >= x) PRINT *, X

If 1.5 < X <2.5, the computer will print out the value of X.
Otherwise it will not print the value of X.

11

General form of the IF construct

IF (logical-expression) THEN
statement-sequencel

ELSE
statement-sequence?2

END IF

If the logical-expression is TRUE, then do

statement-sequencel otherwise do statement-sequence2

Discriminant = B *x*x 2 - 4. 0xA*xC
IF (Discriminant >= 0) THEN

Discriminant = SQRT(Discriminant)

Root_1
Root_2

PRINT x*,

ELSE
PRINT x*,
END IF

(-B + Discriminant) / (2.0 x A)
(-B - Discriminant) / (2.0 * A)
"The roots are:", Root_1, Root_2

"There are no real roots"

IF-ELSE IF Constructs

IF (logical-expressionl) THEN

statement-sequencel
ELSE IF (logical-expression2) THEN
statement-sequence?2

ELSE IF (logical-expression3) THEN

statement-sequence3

statement-sequence
END IF

If (logical-expressionl) is true, Then do statement-sequencel and
go to END IF

If (logical-expressionl) is false, then check (logical-expression2). If

(logical-expression2) is true, do statement-sequence2 and go to

If all the above logical-expressions are false, then do

statement-sequence

Named constructs

IF and IF-ELSE IF constructs may be named by attaching a label
at the beginning and the end of the construct. Example

Update: IF (X > Largest) THEN
Largest = X
Position = N

END IF Update

EmpType: IF (EmployeeType == "s") THEN

PRINT *, "Enter employee’s annual salaty:"
READ *, Salary
Pay = Salary / 52
ELSE
PRINT *, " Enter hours worked and hourly rate:"
READ *, HoursWorked, HourlyRate
Overtime: IF (HoursWorked > 40.0) THEN
Pay = 40.0 * HourlyRate &
+ Multiplier * HourlyRate * (HoursWorked - 40.0)
ELSE
Pay = HoursWorked * HourlyRate
END IF QOvertime
END IF EmpType

The CASE construct

SELECT CASE (selector)
CASE (label-1listil)
statement-sequencel
CASE (label-1ist2)

statement-sequence?2

END SELECT

where selector is an expression of integer, or character, of logical.

Each of the label-list is a list of one or more possible values of
selector, or the word DEFALULT.

It is also can use named case constructs

Class: SELECT CASE (ClassCode)
CASE (1)
PRINT *, "Freshman"
CASE (2)
PRINT *, "Sophomore"
CASE (3)
PRINT *, "Junior"

CASE (4)
PRINT *, "Senior"
CASE (5)
PRINT *, "Graduate"
CASE DEFAULT
PRINT *, "Illegal class code", ClassCode
END SELECT class

Example:

The level of air pollution in a city is measured by a pollution index.
Readings are made at 12:00 P.M. at three locations. The integer
average of these three readings is the pollution index. A value of 50

parts per million or greater for this index indicates a hazardous

condition. A index below 25 parts million indicates a good

condition. Otherwise, the condition is fair. The city environmental
statistician would like a program that calculates the pollution index
and then determines the air condition.

It is not a good idea to start writing computer program right after
reading the problem.

General steps:

e Problem analysis and specification

e Algorithm design

e Coding
Testing

Maintenance

Analysis and specification:

Need to calculate the index, which required the 3 readings. The
formula of the index is the average.

Need to decide the condition, which is determined by compare the

index with some constants.
Design:

Decide variables, constants, input and output, the algorithm

(pseudo codes or diagram)

Coding: pp. 56
Testing:

PROGRAM Pollution
IMPLICIT NONE
INTEGER :: Level_1, Level_2, Level_3, Index
INTEGER, PARAMETER :: LowCutoff = 25, HighCutoff = 50
PRINT *, "Enter 3 pollution readings:"
READ *, Level_1, Level_2, Level_3
Index = (Level_1 + Level_2 + Level_3) / 3
SELECT CASE (Index)
CASE (:LowCutoff - 1)
PRINT *, "Good condition"
CASE (LowCutoff : HighCutoff -1))
PRINT *, "Fair condition"
CASE (HighCutoff :)
PRINT *, "Poor condition"
END SELECT
END PROGRAM pollution

The logical data type has two possible values: .true. or .false.

The output of the logical constant is: T or F. The input is decided
by the first letter of the input word is T or F.

PROGRAM HALF_ADDER
IMPLICIT NONE
LOGICAL :: A, B, Sum, Carry

PRINT *, "Enter logical input A and B:"
READ *, A,B

Sum = (A .OR. B) .AND. .NOT. (A .AND. B)
Carry = A .AND. B

PRINT *, "Carry, Sum = ", Carry, Sum
END PROGRAM HALF_ADDER

Sample runs:

Enter logical input A
TT
Carry, Sum = T F

Enter logical input A
TF
Carry, Sum = F T

Enter logical input A
FT
Carry, Sum = F T

Enter logical input A
FF

Carry, Sum

