
CS 2412 Data Structures

Chapter 4

Lists

Definition

A list is an ordered collection of data in which an addition or

deletion can be performed at any position.

In general a list is neither FIFO nor FILO. The entries can be in

and out in random.

Data Structure 2015 R. Wei 2

Basic operations:

• Operations creation, destroy, empty, full, size are similar to the

queue.

• Insertion: to determine the position where the data will insert,

a key is used to identify a node.

• Deletion: after finding the location of the data, the node is

deleted from the list.

• Retrieval: after finding the location of the data, the data is

retrieved, but the list is unchanged.

• Traversal: processes each element in a list in sequence.

We will use pseudo codes to describe these functions.

Data Structure 2015 R. Wei 3

We need to allocate the position by key. Also we need to distinct

that the insertion happens at the list head or other positions.

Data Structure 2015 R. Wei 4

Similar to insertion, we need to consider if the head of the list will

be deleted.

Data Structure 2015 R. Wei 5

We need a search function to find out the position of certain data.

Data Structure 2015 R. Wei 6

The above search list function is for searching an “ordered list”,

where the keys are arranged in some order. And the search begins

always from the list head. The search function can be a little

complicated if the list is not ordered.

We could make the search slightly more efficient if we have the rear

pointer of the list. We can test to see if the searched key is greater

than the last key.

Data Structure 2015 R. Wei 7

Dynamic liked list

// List ADT Type Defintions

typedef struct node

{

void* dataPtr;

struct node* link; //pointer to next node

} NODE;

typedef struct

{

int count;

NODE* pos; // position determined by application

NODE* head;

NODE* rear;

int (*compare) (void* argu1, void* argu2);

} LIST;

Data Structure 2015 R. Wei 8

LIST* createList

(int (*compare) (void* argu1, void* argu2))

{

LIST* list;

list = (LIST*) malloc (sizeof (LIST));

if (list)

{

list->head = NULL;

list->pos = NULL;

list->rear = NULL;

list->count = 0;

list->compare = compare;

} // if

return list;

} // createList

Data Structure 2015 R. Wei 9

/* Pre pList is pointer to valid list

dataInPtr pointer to insertion data

Post data inserted or error

Return -1 if overflow

0 if successful

1 if dupe key */

int addNode (LIST* pList, void* dataInPtr)

{

bool found;

bool success;

NODE* pPre;

NODE* pLoc;

found = _search (pList, &pPre, &pLoc, dataInPtr);

if (found) // Duplicate keys not allowed

return (+1);

success = _insert (pList, pPre, dataInPtr);

if (!success) // Overflow

return (-1);

return (0);

} // addNode

Data Structure 2015 R. Wei 10

/* Pre pList pointer to a valid list

pPre pointer to data’s predecessor

dataInPtr data pointer to be inserted

Post data have been inserted in sequence

Return boolean, true if successful,

false if memory overflow

*/

static bool _insert (LIST* pList, NODE* pPre,

void* dataInPtr)

{

NODE* pNew;

if (!(pNew = (NODE*) malloc(sizeof(NODE))))

return false;

pNew->dataPtr = dataInPtr;

pNew->link = NULL;

if (pPre == NULL)

{ // Adding before first node or to empty list.

pNew->link = pList->head;

pList->head = pNew;

if (pList->count == 0) // Adding to empty list. Set rear

pList->rear = pNew;

} // if pPre

else

{ // Adding in middle or at end

pNew->link = pPre->link;

pPre->link = pNew; // Now check for add at end of list

if (pNew->link == NULL)

pList->rear = pNew;

} // if else

(pList->count)++;

return true;

} // _insert

Data Structure 2015 R. Wei 11

/* Post Node deleted or error returned.

Return false not found; true deleted

*/

bool removeNode (LIST* pList, void* keyPtr,

void** dataOutPtr)

{

bool found;

NODE* pPre;

NODE* pLoc;

found = _search (pList, &pPre, &pLoc, keyPtr);

if (found)

_delete (pList, pPre, pLoc, dataOutPtr);

return found;

} // removeNode

Data Structure 2015 R. Wei 12

/* ================= _delete ================

Deletes data from a list and returns

pointer to data to calling module.

Pre pList pointer to valid list.

pPre pointer to predecessor node

pLoc pointer to target node

dataOutPtr pointer to data pointer

Post Data have been deleted and returned

Data memory has been freed

*/

void _delete (LIST* pList, NODE* pPre,

NODE* pLoc, void** dataOutPtr)

{

// Statements

*dataOutPtr = pLoc->dataPtr;

if (pPre == NULL)

// Deleting first node

pList->head = pLoc->link;

else

// Deleting any other node

pPre->link = pLoc->link;

// Test for deleting last node

if (pLoc->link == NULL)

pList->rear = pPre;

(pList->count)--;

free (pLoc);

return;

} // _delete

Data Structure 2015 R. Wei 13

bool searchList (LIST* pList, void* pArgu,

void** pDataOut)

{

bool found;

NODE* pPre;

NODE* pLoc;

found = _search (pList, &pPre, &pLoc, pArgu);

if (found)

*pDataOut = pLoc->dataPtr;

else

*pDataOut = NULL;

return found;

} // searchList

Data Structure 2015 R. Wei 14

bool _search (LIST* pList, NODE** pPre, //pointer to predecessor

NODE** pLoc, /*point to receive node*/

void* pArgu /* key being sought*/)

{ //Macro Definition

#define COMPARE \

(((* pList->compare) (pArgu, (*pLoc)->dataPtr)))

#define COMPARE_LAST \

((* pList->compare) (pArgu, pList->rear->dataPtr))

int result; //local definition

*pPre = NULL;

*pLoc = pList->head;

if (pList->count == 0)

return false;

if (COMPARE_LAST > 0)

{

*pPre = pList->rear;

*pLoc = NULL;

return false;

} // if

while ((result = COMPARE) > 0)

Data Structure 2015 R. Wei 15

{ // Have not found search argument location

*pPre = *pLoc;

*pLoc = (*pLoc)->link;

} // while

if (result == 0) // argument found--success

return true;

else

return false;

} // _search

Data Structure 2015 R. Wei 16

/* This algorithm retrieves data in the list without

changing the list contents. */

static bool retrieveNode (LIST* pList ,void* pArgu,

void** dataOutPtr)

{

bool found;

NODE* pPre;

NODE* pLoc;

found = _search (pList, &pPre, &pLoc, pArgu);

if (found)

{

*dataOutPtr = pLoc->dataPtr;

return true;

} // if

*dataOutPtr = NULL;

return false;

} // retrieveNode

Data Structure 2015 R. Wei 17

bool traverse (LIST* pList,

int fromWhere,

void** dataPtrOut)

{

if (pList->count == 0)

return false;

if (fromWhere == 0)

{

pList->pos = pList->head;

*dataPtrOut = pList->pos->dataPtr;

return true;

} // if fromwhere

else

{

if (pList->pos->link == NULL)

return false;

Data Structure 2015 R. Wei 18

else

{

pList->pos = pList->pos->link;

*dataPtrOut = pList->pos->dataPtr;

return true;

} // if else

} // if fromwhere else

} // traverse

Data Structure 2015 R. Wei 19

LIST* destroyList (LIST* pList)

{

NODE* deletePtr;

if (pList)

{

while (pList->count > 0)

{

free (pList->head->dataPtr); // delete data

deletePtr = pList->head;

pList->head = pList->head->link;

pList->count--;

free (deletePtr); // delete node

} // while

free (pList);

} // if

return NULL;

} // destroyList

Data Structure 2015 R. Wei 20

Comparison of implementations

Contiguous storage is generally preferable: when the records are

individually vary small; when the size of the list is known when the

program is written; when few insertions or deletions need to be

made except at the end of the list; and when random access is

important.

Linked storage proves superior: when the records are large; when

the size of the list is not know in advance; and when flexibility is

needed in inserting, deleting and rearranging the entries.

Data Structure 2015 R. Wei 21

Linked lists in Arrays

Using arrays for linked lists have applications in certain cases.

• the number of entries in a list is known in advance.

• the links are frequently rearranged, but relatively few insertions

or deletions are made.

• the same data are sometimes best treated as a linked list and

other times as a contiguous list.

Example: sort a list of names.

Data Structure 2015 R. Wei 22

Implementation

If a list is implemented by contiguous memory (array), then

InsertList and DeleteList need to move entries backward or

forward. So the amount of work the function does is

approximatively proportional to n, where n is the length of the list.

Note: In processing a contiguous list with n entries:

InsertList and DeletList require time approximately

proportional to n. CreateList, ClearList, ListEmpty,

ListFull, ListSize, ReplaceList and RetrieveList operate in

constant time.

Data Structure 2015 R. Wei 23

Operations

The operations CreateList, ClearList, ListEmpty, ListFull,

ListSize are similar to those of stacks and queues. The other

operations can be defined as follows.

void InsertList(Position p, ListEntry x, List *list);

Pre: The list list has been created, list is not full, x is a valid

list entry, and 0 ≤ p ≤ n, where n is the number of entries in list.

Post: x has been inserted into position p in list; the entry

formerly in position p (provided p < n) and all later entries have

their position number increased by 1.

Data Structure 2015 R. Wei 24

void RemoveList(Position p,ListEntry *x, List *list);

Pre: The list list has been created, list is not empty, and 0 ≤ p

< n, where n is the number of entries in list.

Post: The entry in position p of list has been returned as x and

deleted from list; the entries in all later positions (provided p

< n− 1) have their position numbers decreased by 1.

Data Structure 2015 R. Wei 25

Other operations:

RetrieveList(Position p, ListEntry *x, List *list);

Pre: The list list has been created, list is not empty, and 0 ≤ p

< n, where n is the number of entries in list.

Post: The entry in position p of list has been returned as x. list

remains unchanged.

ReplaceList(Position p, ListEntry x, List *list);

Pre: The list list has been created, list is not empty, x is a balid

list entry, and 0 ≤ p < n, where n is the number of entries in list.

Post: The entry in position p of list has been replaced by x. The

other entries of list remain unchanged.

Data Structure 2015 R. Wei 26

bool Traverse(List *list, Position p, void ** dataPr)

Pre: The list has been created, list is not empty, and 0 ≤ p

< n, where n is the number of entries in list.

Post: The entry in position p of list has been returned to

*dataPr. The position moves to next entry and return true if p <

n-1, or return false if p = n-1.

Data Structure 2015 R. Wei 27

Storage classes in C

In C, there are several storage classes of variables, which provide

information about their visibility, lifetime and location.

auto, register, static, extern

The external declaration tells the compiler the type of the variable

and that the compiler should assume space for it is allocated

elsewhere. The declaration leaves the linker to resolve the

references.

Example: extern ListNode workspace[];

Data Structure 2015 R. Wei 28

typedef int ListIndex;

typedef struct listnode{

ListEntry entry;

ListIndex next;

} ListNode;

typedef struct list{

ListIndex head;

int count;

} List;

extern ListIndex avail, lastused;

extern ListNode workspace[];

Data Structure 2015 R. Wei 29

Array workspace[] is the reserved space for all the list nodes.

An index lastused indicates the position of the last node that has

been used at some time. Location with indices greater that

lastused have never been allocated.

An index avail is used to denote the top of a stack that records

the nodes have been used and then returned to available space.

Note that the stack is also using the workspace.

Data Structure 2015 R. Wei 30

Example: If we have a workspace[5]. We want to do the

following operations:

Insert A,B,C,D, delete C, insert E, delete A,B, insert C, B.

initial: list.head = -1, list.count = 0, avail=-1,

lastused=-1

insert A: workspace[0].entry=A, workspace[0].next=-1,

list.head=0, list.count=1, lastused=0, avial=-1

insert B: workspace[1].entry=B, workspace[1].next=-1,

workspace[0].next=1, list.count=2, lastused=1

insert C: workspace[2].entry=C, workspace[2].next=-1,

workspace[1].next=2, list.count=3, lastused=2

Data Structure 2015 R. Wei 31

insert D: workspace[3].entry=D, workspace[3].next=-1,

workspace[2].next=3, list.count=4, lastused=3

delete C: avail=2, workspace[1].next=3, lastused =3,

workspace[2].next =-1

insert E: workspace[2].entry=E, workspace[2].next = -1,

workspace[3].next=2, avail=-1

delet A: list.head=1, list.cout=3, workspace[0].next=-1,

avail=0

delet B: list.head=2, list.cout=2, workspace[1].next =0,

avail= 1

insert C: list.cout=3, workspace[1].next=-1,

workspace[1].entry=C, workspace[2].next=1, avail= 0

Data Structure 2015 R. Wei 32

Prototypes of a linked list (array implementation)

void CreateList(List *);

int CurrentPosition(Position, List*);

void DisposeNode(ListIndex, List *);

void Error(char *);

void InsertList(Position,ListEntry *,List *);

ListIndex NewNode(void);

void SetPosition(Position,ListIndex *,List *);

void TraverselList(List *,void(*f)());

void WriteEntry(ListTntry);

Data Structure 2015 R. Wei 33

ListIndex NewNode(void) //make a new node.

Pre: The list indices avail and lastused have been initialized

when they were defined as global variables and have been used of

modified only by NewNode and DisposeNode. The workspace array

is not full.

Post: The list index newindex has been set to the first available

place in workspace; avail, lastused and workspace have been

updated as necessary.

Uses: avail, lastuse and workspace as global variables.

Data Structure 2015 R. Wei 34

void DisposeNode(ListIndex oldindex,List *list)/* return

a node to available space.*/

Pre: The list indices avail and lastused have been initialized

when they were defined as global variables and have been used or

modified only by NewNode and DisposeNode; oldindex is an

occupied position in workspace.

Post: The list index oldindex has been pushed onto the linked

stack of available space; avail, lastused and workspace have

been updated as necessary.

Uses: avail, lastuse and workspace as global variables.

Data Structure 2015 R. Wei 35

void TranseList(List *list, void(*f)())

{

ListIndex current;

for(current=list->head;current!=-1;

current=workspace[current].next)

f(workspace[current].entry);

}

Data Structure 2015 R. Wei 36

void InsertList(Position p, ListEntry x, List *list)

{ ListIndex newindex, previous;

if(p<0 ||P>list->count)

Error("Inserting into a nonexisting position.");

else{

newindex=NewNode();

workspace[newindex].entry=x;

if(p==0){

workspace[newindex].entry=list->head;

list->head=newindex;

}else{

SetPosition(p-1,&previous,list);

workspace[newindex].next=workspace[previous].next;

workspace[previous].next=newindex;

}

list->count++; } }

Data Structure 2015 R. Wei 37

Generating Permutations

1

21 12

321 231 213 312 132 123

.....

Data Structure 2015 R. Wei 38

Idea: to get n! permutations recursively. Suppose we already have

all permutaions of size k − 1. We want all permutations of size k.

void Permute(k,n)

{

for each of the k possible positions in the list

{ Insert k into the given position;

if k == n

Process Permutation

else

Permute(k+1,n);

Remove k from the given position;

}

}

Data Structure 2015 R. Wei 39

Testing Insert and Delete Logic

1. Insert a node into a null list

2. Insert a node before the first data node

3. Insert between two data nodes

4. Insert after the last node

Test delete logic is similar to testing the insert logic.

Data Structure 2015 R. Wei 40

Complex Implementations

Circularly linked lists

The last node’s link points to the first node of the list.

Keeping the current position: keep a Position currentpos in the

definition of a List. This kind of lists are efficient with

applications that refer to the same entry several times or access to

nodes in the middle of the list without starting at the beginning.

Insert a node before the first node is the same as insert a node after

the last node.

Search a node will be stopped at the node before the start node.

Data Structure 2015 R. Wei 41

Doubly linked lists

Allows moving both forward and backward.

typedef struct listnode{

ListEntry entry;

struct listnode *next;

struct listnode *previous;

} ListNode;

typedef struct list{

int count;

ListNode *current;

Position currentpos;

} List;

Data Structure 2015 R. Wei 42

void SetPosition(Position p,List *list)

{

if(p<0||p >= list->count)

Error("illegal position.");

else if(list->currentpos <p)

for(;list->currentpos!=p;list->currentpos++)

list->current = list->current->next;

else if(list->currentpos > p)

for(;list->current = list->current->previous;

}

Doubly linked list uses some space for an extra pointer, but saves

search time.

Data Structure 2015 R. Wei 43

void InsertList(Position p, ListEntry x,List *list)

{

ListNode *newnode,*following;

if(p<0||p>list->count)

Error("Attempt to insert in a wrong position.");

else{

newnode=MakeListNode(x);

if(p==0){

newnode->previous=NULL;

if(list->count==0)

newnode->next=NULL;

else{

SetPosition(0,list);

newnode->next=list->current;

list->current->previous=newnode;

}

Data Structure 2015 R. Wei 44

}else{

SetPostion(p-1,list);

following=list->current->next;

newnode->next=following;

newnode->previous=list->current;

list->current->next=newnode;

if(following)

following->previous=newnode;

}

list->current=newnode;

list->currentpos=p;

list->count++;

}

}

Data Structure 2015 R. Wei 45

Multilinked lists

A multilinked list is a list with two or more logical key sequences.

A node has two or more link fields according to different key

sequences.

To insert a node, need to find out the linking position and insert

for each link fields.

To delete a node, need to reconnect the pointers for each logical list.

Data Structure 2015 R. Wei 46

Example

typedef struct node

{

int idNumber;

int telephone;

string firstName;

string lastName;

struct node* nextID;

struct node* nextName;

} NODE;

Data Structure 2015 R. Wei 47

typedef struct

{

int count;

NODE* IDpos;

NODE* NamePos;

NODE* IDhead;

NODE* IDrear;

NODE* NameHead;

NODE* NameRear;

int (*compare) (void* argu1, void* argu2);

} LIST;

Data Structure 2015 R. Wei 48

